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Let f # C[&1, 1] be real-valued. We consider the sequence of strong unicity con-
stants (#n ( f ))n induced by the polynomials of best uniform approximation of f.
It is proved that lim infn � � #n ( f )=0, whenever f is not a polynomial. � 1999

Academic Press

1. STATEMENT OF THE RESULT AND NOTATIONS

For a given real-valued function f # C[&1, 1] we denote by qn* , n # N0 ,
its best uniform approximation in the set Pn of algebraic polynomials of
degree at most n # N0 :

& f &qn*&=min
q # Pn

& f &q&=min
q # Pn

[ max
x # [&1, 1]

| f (x)&q(x)|].

In this situation the following strong uniqueness theorem holds.

Theorem A (Newman and Shapiro [11, Theorem 4]). For each n # N0

there exists a constant C=Cn ( f )>0 such that

& f &q&�& f &qn*&+C &q&qn*& for all q # Pn . (1)

Definition. For each n # N0 the largest constant C such that (1) holds
is called the strong unicity constant and will be denoted by #n ( f ). We put
Mn ( f ) :=1�#n ( f ).

Poreda [12] raised the question to describe the behaviour of the
sequence (Mn ( f ))n for a given function f, and there are various results on
this problem [2�9, 13].

If, for instance, f # Pm is a polynomial it is easy to see that Mn ( f )=1 for
all n�m. In this paper we shall prove the following conjecture of Henry
and Roulier [6].
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Theorem. If f is not a polynomial, then we have

lim sup
n � �

Mn ( f )=�.

We note that the proof presented here will not provide any concrete
estimate for the sequence Mn ( f ).

To prove this result let

En=En ( f ) :=[x # [&1, 1] : | f (x)&qn*(x)|=& f &qn*&], n # N0

and

_n (x)=_n ( f, x) :=sign( f &qn*)(x), n # N0 .

The strong unicity constant #n ( f ) can be characterized in terms of En and
_n (x).

Theorem B (Bartelt and McLaughlin [1] or [3, p. 46]).

1
Mn ( f )

=#n ( f )=min

q{0

q # Pn

maxx # En
q(x) _n (x)

&q&
.

Thus, to prove our result, it will be sufficient to find polynomials qn # Pn ,
where &qn& becomes infinitely large in comparison to maxx # En

qn (x) _n (x),
as n increases.

We decompose the set En=�m
j=1 E j

n into sign components

E 1
n<E 2

n< } } } <E m
n , i.e., x< y for all x # E j

n , y # E j+1
n ,

such that _n (x) is constant on each E j
n and m=m(n) is minimal. For each n,

where qn* {q*n+1 , we have m(n)=n+2. Thus, if f is not a polynomial,
there exists a subsequence L of N0 such that m(n)=n+2, n # L.

For the sets En=�n+2
j=1 E j

n , n # L, we define

!j=!j (n) :=min E j
n and 'j='j (n) :=max E j

n , 1� j�n+2.

We follow an argument of H.-P. Blatt [3, p. 46] and consider the following
set of problems:

Problem A(n, k, y). Let k # [1, ..., n+2] and y # E k
n be fixed. Determine

pk
n # Pn such that

&_n ( y) pk
n( y) is maximal
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subject to the condition that

max
x # En

pk
n(x) _n (x)�1.

By [3, Lemma 1], the problem A(n, k, y) has a solution pk
n # Pn .

Moreover, for any solution pk
n , there exist n+1 points X k

n=
(x1 , ..., xk&1 , xk+1 , ..., xn+2) such that

xj # E j
n and pk

n(x j) _n (xj)=1, for all 1� j�n+2, j{k.

For the sake of simplicity we avoid noting the index y for pk
n , X k

n , as well
as n, k, y for the points xj of X k

n .
The points in the solution X k

n of any of the problems A(n, k, y) are
ordered in the following way

!1�x1�'1< } } } <!k&1�xk&1�'k&1<!k� y
(2)

y�'k<!k+1�xk+1�'k+1< } } } <!n+2�xn+2�'n+2 .

Further, since _n |E j
n
=&_n | E n

j+1 , we obtain some relations for the zeros ` j

of pk
n .

In case k=1 or k=n+2, there exist exactly n zeros of pk
n which are

ordered in the following way

x2<`2<x3< } } } <`n+1<xn+2 , k=1, (3)

x1<`2<x2< } } } <`n+1<xn+1 , k=n+2. (4)

In case 2�k�n+1, there exist exactly n&1 zeros `2 , ..., `k&1 ,
`k+1 , ..., `n+1 of pk

n in [x1 , xn+2] which are ordered in the following way

x1<`2<x2< } } } <`k&1<xk&1< y<xk+1<`k+1< } } } <`n+1<xn+2 .

(5)

Moreover, in this case, there may exist one additional zero `0 � [x1 , xn+2].

2. PROOF OF THE RESULT

We assume that Mn ( f )�M<� for all n # N0 . By Theorem B this
implies

&pk
n &�M (6)
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for all possible n # L, 1�k�n+2 and y # E k
n . In particular, the Bernstein

inequality [10, p. 118] yields

|( pk
n)$ (x)|�

n

- 1&x2
M, x # [&1, 1]. (7)

The proof turns out to be elementary but somewhat technical. Therefore it
is split into several lemmas which are implied by our assumption (6) and
which will finally lead to a contradiction.

Throughout the proof C and D are used to denote absolute positive con-
stants that depend only on the function f. Whenever involved in estimates
for the solutions pk

n and X k
n of a problem A(n, k, y) they do in particular

not depend on the special problem A(n, k, y) being under consideration.
We note that C, D used in different places of the proof may have different
values.

In a first step we obtain some control on the distances between the
various points induced by the sets E j

n and the problems A(n, k, y). We will
get estimates from above for the distance of any two such points and
estimates from below, whenever there exists a point of X k

n and zero of pk
n

between two such points.

Lemma 1. For each n # N let

dn ( j) :=
min[ j, n+3& j ]

n2 , 1� j�n+2

and

dn ( j, &)=dn (&, j)= :
&

l= j

dn (l ), 1� j�&�n+2.

Then there exist constants C1 , D1>0 not depending on n # L, 1�k�n+2,
or on the choice of y in A(n, k, y) such that the following properties hold.

Let !1 , ..., !n+2 and '1 , ..., 'n+2 denote the end points of E 1
n , ..., E n+2

n .
Further, let pk

n , X k
n=(x1 , ..., xk&1 , xk+1 , ..., xn+2) denote the solution of

A(n, k, y) and let the zeros of pk
n be numbered according to (3), (4), (5).

(a) For all points xj in X k
n and any zero ` # [&1, 1] of pk

n we have

|'j&!j |�C1dn ( j), 1� j�n+2,

D1dn ( j)�|xj+1&xj |�C1dn ( j), j # [1, ..., n+1]"[k&1, k],

D1dn ( j)�|xj&`|.
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(b) For all points x j , x& in X k
n and any zero `& # [&1, 1] of pk

n we have

D1dn ( j, &)�|xj&x& |�C1dn ( j, &),

j{&, [ j, &]{[k&1, k+1],

D1dn ( j, &)�|xj&`& |�C1dn ( j, &),

D1dn (k, &)�| y&`& |�C1dn (k, &),

D1dn ( j, &)�|xj&'& |, |xj&!& |,

|&& j |�2, [ j, &]{[k&1, k+1],

|xj&'& |, |x j&!& |�C1dn ( j, &), 1�&�n+2.

Proof of Lemma 1. Let + denote the arcsine distribution of [&1, 1]

d+(x)=
2
?

1

- 1&x2
, x # [&1, 1].

First, we show that for some C>0 we have

+([&1, !2]), +(['n+1 , 1]), +(['j&1 , !j+1])

�C�n, 2� j�n+1. (8)

If not, we can select such subintervals, say In , such that lim supn # L

n+(In)=�. Then, by a slight modification of the proof of [2, Theorem 6],
there exist polynomials qn # Pn satisfying

qn (x){0, x # In ,

and

lim inf
n # L

sup
x # [&1, 1]"In

|qn (x)|
&qn&

=0.

By Theorem B, this contradicts our assumption (6) on the boundedness of
(Mn ( f ))n .

We have | pk
n(xj+1)& pk

n(x j)|=2 and | pk
n(x j)& pk

n(`)|=1 for all xj , xj+1

in X k
n and any zero ` # [&1, 1] of pk

n . Therefore, by (7), we may find some
D>0 such that

+([x j , xj+1]), +([xj , `])�D�n. (9)

To derive the estimates stated in Lemma 1, we consider the transformation
x=cos ., . # [0, ?]. The inequalities (8), (9) and the interlacing properties
given in (2), (3), (4), (5) imply estimates for the angles belonging to the
various points.
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We shall only give the idea for |xj&xj+1|, where xj , xj+1 # [&1, 0] and
j+1<k. Let xj=cos(.j)<xj+1=cos(.j+1), ?�2�.j+1<.j�?.

Since

+([x1 , x2])+ } } } ++([xj , xj+1])�+([&1, xj+1])

�+([&1, !2])+ } } } ++([!j , 'j+1]),

we have ?&Dj?�n�.j+1�?&C( j+1) ?�n.
Since +([xj , xj+1])�+([!j , 'j+1]), we further have 2C?�n�|.j+1&.j |

�D?�n.
The estimates for |x j+1&xj | now follow from

|xj&x j+1|= } |
.j+1

.j

sin(t) dt }�2
? } |

.j+1

.j

(?&t) dt }
and

|xj&x j+1|= } |
.j+1

.j

sin(t) dt }� } |
.j+1

.j

(?&t) dt } ,
with some suitable constants C1 , D1>0.

All statements in part (a) can be derived in this manner and the
estimates of the second part are a direct consequence of part (a).

Lemma 2. There exist constants C2 , D2>0 not depending on n�3 or
1� j�n+2 such that

(a) D2 log(n)� :
n+2

&=1
&{ j

dn (&)
dn ( j, &)

�C2 log(n),

(b) :
n+2

&=1
&{ j

dn ( j)
dn ( j, &)

�C2 log(n),

(c) :
n+1

&=2

dn (&)

- dn (1, &) dn (&, n+2)
�C2 ,

(d) :
n+2

&=1
&{ j

dn (&)2

dn ( j, &)2 , :
n+2

&=1
&{ j

dn (&) dn ( j)
dn ( j, &)2 �C2 ,

(e) \ `
n

&=3

dn (1, &) dn (n+2, &)
dn (&)2 +

1�2n

�C2n.
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Proof of Lemma 2. The definition of dn ( j, &) yields that

1
2n2 | j2&&2|�dn ( j, &)�

1
n2 | j2&&2|, 1� j{&�

n+3
2

and

1
2n2 |(n+3& j)2&(n+3&&)2|�dn ( j, &)

dn ( j, &)�
1
n2 |(n+3& j)2&(n+3&&)2|,

n+3
2

� j{&�n+2.

(1) We shall prove part (a) only for the case that 1� j�n$ :=
[(n+3)�2]. It is easy to see that

:
n$

&=1
&{ j

dn (&)
dn ( j, &)

� :
n+2

&=n$+1
&{n+3& j

dn (&)
dn ( j, &)

� :
n+2

&=n$+1

dn (&)
dn ( j, &)

&1.

Therefore, it is sufficient to consider

:
n$

&=1
&{ j

dn (&)
dn ( j, &)

�2 :
n$

&=1
&{ j

&
| j2&&2|

�2 :
n$

&=1
&{ j

1
| j&&|

�C log(n$)�C log(n),

for some C>0. On the other hand

:
n$

&=1
&{ j

dn (&)
dn ( j, &)

� :
n$

&=1
&{ j

&
| j2&&2|

=
1
2 \ :

j&1

&=1

1
j&&

&
1

j+&
+ :

n$

&= j+1

1
&& j

+
1

&+ j+
=

1
2 \ :

j&1

&=1

1
&

& :
2 j&1

&= j+1

1
&

+ :
n$& j

&=1

1
&

+ :
n$+ j

&=2 j+1

1
&+

�
1
2 \ :

n$�2

&=1

1
&

& :
2 j&1

&= j+1

1
&+�D log(n$)�D(log(n)&log(2)),

for some D>0, since the negative term remains uniformly bounded for all
possible n and j. Part (a) now follows with some suitable C2 , D2>0.

(2) Part (b) may be proved similarly to part (a).

(3) Let n$ :=[(n+3)�2)]. For reasons of symmetry we have

:
n+1

&=2

dn (&)

- dn (1, &) dn (&, n+2)
�2 :

n$

&=2

dn (&)

- dn (1, &) dn (&, n+2)
.
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It is easy to see that there exists some D>0 such that dn (&, n+2)�D for
all 1�&�n$. Thus, we get

�
2

D1�2 :
n$

&=2

dn (&)

- dn (1, &)
�

23�2

D1�2

1
n

:
n$

&=2

&

- &2&1
�C2 ,

for some suitable C2>0.

(4) We shall prove only the second estimate of part (d) for the case
that 1� j�n$ :=[(n+3)�2]. Similarly to part (1), it is sufficient to
consider the sum

:
n$

&=1
&{ j

dn (&) dn ( j)
dn ( j, &)2 �4 :

n$

&=1
&{ j

&j
( j2&&2)2=4 :

n$

&=1
&{ j

1
( j&&)2

&j
( j+&)2

�4 :
n$

&=1
&{ j

1
( j&&)2�C,

for some suitable C>0. This implies the second estimate of part (d) with
some suitable C2>0.

(5) Let n$ :=[(n+3)�2)]. For reasons of symmetry we have

`
n

&=3

dn (1, &) dn (n+2, &)
dn (&)2 �\ `

n$

&=3

dn (1, &) dn (n+2, &)
dn (&)2 +

2

.

It is easy to see that there exists some C>0 such that dn (&, n+2)�C for
all 1�&�n+2 and we get

�C 2n$ \ `
n$

&=3

dn (1, &)
dn (&)2 +

2

�C2n$ \ `
n$

&=3

n2 &2&1)
&2 +

2

�C2n$n4n$=C2[(n+3)�2]n4[(n+3)�2],

which implies (e) with some suitable C2>0.

Next, we show that the products >j{k | y&xj | become relatively small
for the solution X k

n of any of the problems A(n, k, y), 3�k�n, as n # L
increases.

Lemma 3. There exist constants $ > 0 and C3 > 0 not depending on
n # L, 3�k�n, or on the choice of y in A(n, k, y) such that for
Xk

n=(x1 , ..., xk&1 , xk+1 , ..., xn+2) we have

`
n+2

j=1
j{k

| y&xj |�
C3

n$

|( y&xk&1)( y&xk+1)|
dn (k&1) dn (k+1)

1
2n .
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Proof of Lemma 3. For 3�k�n we have exactly n&1 zeros `j in
[x1 , xn+2] ordered in the following way

x1<`2<x2< } } } <`k&1<xk&1< y<xk+1<`k+1< } } } <`n+1<xn+2 .

In case pk
n has exact degree n, there is one additional zero `0 � [x1 , xn+2].

(1) We distinguish between the cases that pk
n has exact degree n and

exact degree n&1. If pk
n(x)=ak

n xn&1+ } } } , ak
n {0, then for the polynomial

q(x) :=
pk

n(x)
ak

n

# Pn&1

we may find n points xl of X k
n where q has alternating signs and

|q(xl)|�
1

|ak
n |

.

Thus, we must have

1
|ak

n |
�

1
2n&2

and

|( y&x1)( y&xn+2)| `
n+1

j=2
j{k

| y&`j |= |( y&x1)( y&xn+2)|
| pk

n( y)|
|ak

n |

� |( y&x1)( y&xn+2)|
M

|ak
n |

� |( y&x1)( y&xn+2)|
4M
2n �C

1
2n

for some C>0.
If pk

n(x)=ak
n xn+ } } } , ak

n {0, then for the polynomial

q(x) := `
n+1

j=2
j{k

(x&`j)=
pk

n(x)
ak

n(x&`0)
# Pn&1
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we may find n points xl of X k
n where q has alternating signs and

|q(xl)|�
1

|ak
n(x l&`0)|

�
1

|ak
n |( |`0 |+1)

.

Thus, we must have

1
|ak

n |( |`0 |+1)
�

1
2n&2

and

|( y&x1)( y&xn+2)| `
n+1

j=2
j{k

| y&`j |

=|( y&x1)( y&xn+2)|
| pk

n( y)|
|ak

n | | y&`0 |

�|( y&x1)( y&xn+2)|
M

|ak
n | ( | y&`0 | )

�|( y&x1)( y&xn+2)|
4M( |`0 |+1)

| y&`0 |
1
2n

�C
1
2n ,

for some C>0 which, in particular, does not depend on the position of
`0 � [x1 , xn+2].

(2) We estimate

{ `
n+1

j=2
j{k

| y&xj |={ `
n+1

j=2
j{k

| y&` j |=
&1

=
|( y&xk&1)( y&xk+1)|
|( y&`k&1)( y&`k+1)|

`
k&2

j=2

| y&x j |
| y&` j |

`
n+1

j=k+2

| y&x j |
| y&`j |

=
|( y&xk&1)( y&xk+1)|
|( y&`k&1)( y&`k+1)|

`
k&2

j=2
\1&

|xj&` j |
| y&`j | + `

n+1

j=k+2
\1&

|x j&`j |
| y&`j | + .

By Lemma 1 we have

|( y&xk&1)( y&xk+1)|
|( y&`k&1)( y&`k+1)|

�
|( y&xk&1)( y&xk+1)|
D2

1 dn (k&1) dn (k+1)
.
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Further, Lemma 1 and Lemma 2(a) yield

`
k&2

j=2
\1&

|x j&`j |
| y&`j | + `

n+1

j=k+2
\1&

|xj&`j |
| y&`j | +

�exp {& :
k&2

j=2

|xj&`j |
| y&`j |

& :
n+1

j=k+2

|x j&`j |
| y&`j | =

�exp {&
D1

C1 \ :
k&2

j=2

dn ( j)
dn (k, j)

+ :
n+1

j=k+2

dn ( j)
dn (k, j)+=

�exp {&
D1

C1 \D2 log(n)&
dn (1)

dn (k, 1)
&

dn (k&1)
dn (k, k&1)

&
dn (k+1)

dn (k, k+1)
&

dn (n+2)
dn (k, n+2)+=

�
C
n$ ,

for some suitable C, $>0.

(3) Putting part (1) and part (2) together, we obtain that

`
n+2

j=1
j{k

| y&xj |�
C
n$

|( y&xk&1)( y&xk+1)|
dn (k&1) dn(k+1)

1
2n ,

for some C3 :=C>0, and Lemma 3 is proved.

In the following Lemmas 4, 5, and 6 we consider the solutions X 1
n=

(x2 , ..., xn+2) of the special problems A(n, 1, y) with some arbitrary y # E 1
n ,

e.g., y=!1 .
For convenience we put x1 :=y=!1 . If `2 , ..., `n+1 denote the zeros

of p1
n , we obtain

!1=x1= y�'1<!2� } } } �'n+1<!n+2�xn+2�'n+2 ,

and

x1<x2<`2<x3< } } } <xn+1<`n+1<xn+2 .

First, we show that most of the products >&{ j |xj&x& | do not become
too small for our solution X 1

n , as n # L increases.
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Lemma 4. Suppose that =>0. For X 1
n=(x2 , ..., xn+2), x1 :=!1 let a(n)

denote the number of indices j # [2, ..., n+2] such that

`
n+2

&=1
&{ j

|xj&x& |�
n1&=

2n .

Then we have

lim
n # L

a(n)
n

=0.

Proof of Lemma 4. Suppose there exists some a>0 and a subsequence
L$ of L such that

a(n)
n

�a for all n # L$.

Then, for n # L$, there exist at least an�2 indices j�an�2 such that

`
n+2

&=1
&{ j

|xj&x& |�
n1&=

2n ,

and thus, by Lemma 1,

`
&{ j, 1

|xj&x& |�
n1&=

2n

1
|x j&x1|

�
n1&=

2n

1
D1 dn (1, j)

�
n1&=

2n

1
D1 dn (1, [an�2])

�C
n1&=

2n ,

for some C=C(a)>0.
The polynomial p1

n(x)=a1
nxn+ } } } has exact degree n. Because of the

alternation property of p1
n at the n+1 points x2 , ..., xn+2 , the Lagrange

interpolation formula yields

|a1
n |= :

n+2

j=2

1
>&{ j, 1 |xj&x& |

�
an
2

2n

Cn1&=�
a
C

n=2n.

Therefore, we get that &p1
n&�|a1

n | 1�2n&1 becomes unbounded, as n # L$
increases, which contradicts our principal assumption (6). Hence, Lemma 4
is proved.

In the next step we compare the product > |&& j |�2 |xj&x& | to the
product of the distances of xj to '1 , ..., 'j&2 , !j+2 , ..., !n+2 , i.e., to the end-
points of E &

n , |&& j |�2, which are close to xj . Obviously, the first product
can not be smaller than the second. We show that in average it is larger
at most by a factor n, as n # L increases.
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Lemma 5. Let X 1
n=(x2 , ..., xn+2), x1 :=!1 . Then there exists a constant

C5>0 not depending on n # L such that

`
n

j=3
\{ `

n+2

&=1
|&& j | �2

|x j&x& |={ `
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |=
&1

+
1�n

�C5n.

Proof of Lemma 5. (a) We write every x& , 1�&�n+2, as a convex
combination of !& , '&

x&=:&!&+(1&:&) '& , :& # [0, 1].

Then we have for 3� j�n

{ `
n+2

&=1
|&& j | �2

|xj&x& |={ `
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |=
&1

= `
j&2

&=1
\1+

|x&&'& |
|x j&'& |+ `

n+2

&= j+2
\1+

|x&&!& |
|x j&!& |+

= `
j&2

&=1
\1+

:& ('&&!&)
|x j&'& | + `

n+2

&= j+2
\1+

(1&:&)('&&!&)
|x j&!& | +

�exp { :
j&2

&=1

:& ('&&!&)
|xj&'& |

+ :
n+2

&= j+2

(1&:&)('&&!&)
|xj&!& | = . (10)

On the other hand, since |x&&'&&1|�|x&&!& |=(1&:&)('&&!&) and
|x&&!&+1|�|x&&'& |=:& ('&&!&), we have for every 3� j�n,

{ `
n+2

&=1
|&& j | �2

|xj&x& |={ `
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |=
&1

_
| (xj&'j&2)(xj&!j+2)|
| (x j&x1)(xj&xn+2)|

= `
j&2

&=2

|xj&x& |
|x j&'&&1|

`
n+2

&= j+2

|x j&x& |
|xj&!&+1|

= `
j&2

&=2
\1&

|x&&'&&1|
|x j&'&&1|+ `

n+1

&= j+2
\1&

|x&&!&+1|
|x j&!&+1|+

� `
j&2

&=2
\1&

(1&:&)('&&!&)
|xj&'&&1| + `

n+1

&= j+2
\1&

:& ('&&!&)
|xj&!&+1|+

�exp {& :
j&2

&=2

(1&:&)('&&!&)
|x j&'&&1|

& :
n+1

&= j+2

:& ('&&!&)
|xj&!&+1|= . (11)
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(b) Now, let `2 , ..., `n+1 denote the zeros of p1
n :

x1<x2<`2<x3< } } } <xn+1<`n+1<xn+2 .

The crucial step of the proof will be to replace the sums occuring in the
exponential terms above by sums involving the zeros `j .

There exists some C>0 such that the following estimates hold

} :
j&2

&=1

:& ('&&!&)
|x j&'& |

& :
j&1

&=2

:& ('&&!&)
|` j&x& | }�C,

} :
j&2

&=2

(1&:&)('&&!&)
|xj&'&&1|

& :
j&1

&=2

(1&:&)('&&!&)
|`j&x& | }�C,

} :
n+2

&= j+2

(1&:&)('&&!&)
|xj&!& |

& :
n+1

&= j+1

(1&:&)('&&!&)
|`j&x& | }�C,

} :
n+1

&= j+1

:& ('&&!&)
|x j&!&+1|

& :
n+1

&= j+1

:& ('&&!&)
|` j&x& | }�C.

We give the computation only for the first difference. By Lemma 1 we have

} :
j&2

&=1

:& ('&&!&)
|xj&'& |

& :
j&1

&=2

:& ('&&!&)
|`j&x& | }

�
|:1| ('1&!1)

|xj&'1|
+

|:j&1| ('j&1&!j&1)
|xj&`j&1|

+ :
j&2

&=2

|:& | ('&&!&)( |x&&'& |+ |xj&` j | )
| (xj&'&)(`j&x&)|

�
C1dn (1)

D1 dn ( j, 1)
+

C1dn ( j&1)
D1dn ( j)

+
C 2

1

D2
1

:
j&2

&=2

dn (&)(dn (&)+dn ( j))
dn ( j, &) dn ( j, &)

.

Lemma 2(d) yields that the difference may be estimated by some C>0.

(c) Multiplying the two estimates (10), (11) in (a) and replacing the
sums in the exponential terms according to (b) we get

`
n

j=3
\{ `

n+2

&=1
|&& j |�2

|xj&x& |={ `
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |=
&1

+
2

_{ `
n

j=3

| (x j&x1)(xj&xn+2)|
| (x j&'j&2)(x j&!j+2)|=

&1
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�exp {4C(n&2)+ :
n

j=3
\ :

j&1

&=2

(2:&&1)('&&!&)
|`j&x& |

+ :
n+1

&= j+1

(1&2:&)('&&!&)
|`j&x& | += .

We put ;& :=(2:&&1)('&&!&), and thus |;& |�C1 dn (&), by Lemma 1.
To estimate the sum occurring in the exponential term above we write

} :
n

j=3
\ :

j&1

&=2

;&

|`j&x& |
+ :

n+1

&= j+1

&;&

|`j&x& |+}
= } :

n&1

&=2

;& :
n

j=&+1

1
|x&&`j |

& :
n+1

&=4

;& :
&&1

j=3

1
|x&&`j | } .

Since x&&`j<0, &< j, and x&&` j>0, &> j, it follows that

� :
n&1

&=4 };& \ :
n

j=&+1

1
x&&`j

+ :
&&1

j=3

1
x&&`j+}

+ :
3

&=2

|;& | :
n

j=&+1

1
|x&&`j |

+ :
n+1

&=n

|;& | :
&&1

j=3

1
|x&&`j |

� :
n&1

&=4 };& :
n+1

j=2

1
x&&`j }+ :

n&1

&=4

|;& | \ 1
|x&&`n+1|

+
1

|x&&`& |
+

1
|x&&`2 |+

+ :
3

&=2

|;& | :
n

j=&+1

1
|x&&`j |

+ :
n+1

&=n

|;& | :
&&1

j=3

1
|x&&`j |

.

By Lemma 1, we get

�C1 :
n&1

&=4

dn (&) } :
n+1

j=2

1
x&&` j }

+
C1

D1

:
n&1

&=4

dn (&) \ 1
dn (&, n+1)

+
1

dn (&)
+

1
dn (&, 2)+

+
C1

D1

:
3

&=2

dn (&) :
n

j=&+1

1
dn (&, j)

+
C1

D1

:
n+1

&=n

dn (&) :
&&1

j=3

1
dn (&, j)

.
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Lemma 2(a) and (b) yield

�C1 :
n&1

&=4

dn (&) } :
n+1

j=2

1
x&&` j }

+
C1

D1

(C2 log(n)+(n&4)+C2 log(n)+2C2 log(n)+2C2 log(n))

�C1 :
n&1

&=4

dn (&) } :
n+1

j=2

1
x&&` j }+Cn,

for some C>0.
With the help of (7) and since | p1

n(x&)|=1, we can now estimate the
remaining sum

:
n&1

&=4

dn (&) } :
n+1

j=2

1
x&&` j }= :

n&1

&=4

dn (&) } ( p1
n)$ (x&)

p1
n(x&) }

� :
n&1

&=4

dn (&)
Mn

- 1&x2
&

�
Mn
D1 \ :

n&1

&=4

dn (&)

- dn (&, n+2) dn (&, 1)+�Cn,

for some C>0, by Lemma 2(c).

(d) The estimates in (c) yield that for some C>0 we have

`
n

j=3
\{ `

n+2

&=1
|&& j |�2

|xj&x& |={ `
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |=
&1

+
1�n

�C { `
n

j=3

|(xj&x1)(xj&xn+2)|
|(x j&'j&2)(x j&! j+2)|=

1�2n

�C { `
n

j=3

|(xj&x1)(xj&xn+2)|
|(x j&xj&1)(x j&xj+1)|=

1�2n

�C
C1

D1 { `
n

j=3

dn ( j, 1) dn ( j, n+2)
dn ( j) dn ( j) =

1�2n

�C
C1

D1

C2n,

by Lemma 1 and Lemma 2(e). Putting C5 :=CC2 C1 �D1 , Lemma 5 is
proved.
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With the help of Lemma 5 we get

Lemma 6. Suppose that =>0. For X 1
n=(x2 , ..., xn+2), x1 :=!1 let b(n)

denote the number of indices 3� j�n such that

`
j&2

&=1

|xj&'& | `
n+2

&= j+2

|xj&!& |�
1

n1+= `
n+2

&=1
|&& j | �2

|x j&x& |.

Then we have

lim inf
n # L

b(n)
n

>0.

Proof of Lemma 6. By Lemma 5 we have

C5n� `
n

j=3
\{ `

n+2

&=1
|&& j |�2

|xj&x& |={ `
j&2

&=1

|x j&'& | `
n+2

&= j+2

|xj&!& |=
&1

+
1�n

�(n1+=) (n&2&b(n))�n,

which leads to a contradiction if we assume that lim infn # L (b(n)�n)=0.
Hence, Lemma 6 is proved.

Now we are in a position to complete the proof of the theorem. We take
$>0 from Lemma 3 and choose ==$�4 in Lemma 4 and Lemma 6. Since
limn # L a(n)�n=0 and lim infn # L b(n)�n>0 we may find for each n # L,
n sufficiently large, some index k=k(n) # [3, ..., n] such that for X 1

n=
(x2 , ..., xn+2), x1 :=!1 ,

`
n+2

&=1
&{k

|xk&x& |�
n1&=

2n

and

`
k&2

&=1

|xk&'& | `
n+2

&=k+2

|xk&!& |

�
1

n1+= `
n+2

&=1
|&&k |�2

|xk&x& |

=
1

n1+=

1
|(xk&xk&1)(xk&xk+1)|

`
n+2

&=1
&{k

|xk&x& |.
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By Lemma 1 we get

`
k&2

&=1

|xk&'& | `
n+2

&=k+2

|xk&!& |�
1

n2=

D2
1

dn (k&1) dn (k+1)
1
2n

=
1

n$�2

D2
1

dn (k&1) dn (k+1)
1
2n .

For k=k(n) we now consider the solutions X k
n=(x$1 , ..., x$k&1 ,

x$k+1 , ..., x$n+2) of the problems A(n, k, xk), i.e., we choose y=xk , where xk

comes from the solution X 1
n of A(n, 1, !1). We then obtain

`
n+2

j=1
j{k

|xk&x$j |�|(xk&x$k&1)(xk&x$k+1)| `
k&2

j=1

|xk&'j | `
n+2

j=k+2

|xk&!j |

�
D2

1

n$�2

|(xk&x$k&1)(xk&x$k+1)|
dn (k&1) dn (k+1)

1
2n .

But this contradicts Lemma 3 for large n # L. Therefore, our assumption

Mn ( f )�M<�, for all n # L

cannot hold and the theorem is proved.
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